The Birch and Swinnerton-Dyer Conjecture

نویسنده

  • ANDREW WILES
چکیده

A polynomial relation f(x, y) = 0 in two variables defines a curve C. If the coefficients of the polynomial are rational numbers then one can ask for solutions of the equation f(x, y) = 0 with x, y ∈ Q, in other words for rational points on the curve. If we consider a non-singular projective model C of the curve then over C it is classified by its genus. Mordell conjectured, and in 1983 Faltings proved, the following deep result

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Birch-swinnerton-dyer Conjecture

We give a brief description of the Birch-Swinnerton-Dyer conjecture which is one of the seven Clay problems.

متن کامل

ON RUBIN’S VARIANT OF THE p-ADIC BIRCH AND SWINNERTON-DYER CONJECTURE

We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM elliptic curves concerning certain special values of the Katz two-variable p-adic L-function that lie outside the range of p-adic interpolation.

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves

We describe theorems and computational methods for verifying the Birch and Swinnerton-Dyer conjectural formula for specific elliptic curves over Q of analytic ranks 0 and 1. We apply our techniques to show that if E is a non-CM elliptic curve over Q of conductor ≤ 1000 and rank 0 or 1, then the Birch and Swinnerton-Dyer conjectural formula for the leading coefficient of the L-series is true for...

متن کامل

Visible Evidence for the Birch and Swinnerton-dyer Conjecture for Modular Abelian Varieties of Analytic Rank Zero Amod Agashe and William Stein, with an Appendix by J. Cremona and B. Mazur

This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af , 1)/ΩAf , develop tools for computing with Af , and gather data about certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af ha...

متن کامل

Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero

This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af , 1)/ΩAf , develop tools for computing with Af , and gather data about certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000